W 4 GRAE R J

E#&: TX

QQ: 10060502

2021%F 118 15H

&
y &
S
K

OQ

November 15, 2021 1/214

|
H 5%

O BN

© LR
© EiFiil
O LR ERT
Q MEmERT
O Ak i
O EinEET

Q HEMEET
]

November 15, 2021

1. RENE

o HIRZER

§$
©

&

5 S

QQ

. T T

JSNENER)

b 2 A PR R 2 S RE A S BB A SE B EE R AR, BB CIE 5 HEEs
5 NS MR ETEFRIEES), NI ANGRZ A0 T AL M 454 R FA IR A
R, e RSB TRE

TN
QQ

EAREER

Q T IRMESIEREARIER S

O R N L8 JmAE A RARTL IR

Q B AFARGF & MAREER

Q EREMSIIEIT A IR R TTTR
O EiEMBmIREAE AR TIE

O AL = N BT

0 HRZIRELEAEHMITIE

A
QQ

1. RENE

o >Nk

November 15, 2021 6 /214

F 2 J5Tk

Q HIHIRER
Q [HELE JT 3

o HEHAE
o 5EF
o fMHbLER

(FpZFHEL L 1)
]

November 15, 2021 7 /214

November 15, 2021 8 /214

22 FORl——H%E

@ (UNIX Network Programming) ((UNIXM%4RTE) £H1- 52)

@ (TCP/IP lllustrated) ((TCP/IPTHILEME) #1. H2. #£3)

© (Advanced Programming in the UNIX Environment) ({UNIXER
HE RO)

© Richard Stevens[¥3f:

http://www.kohala.com/start/

QQ

. e T

http://www.kohala.com/start/

SEVR— i

© RFC1180-TCP/IP Tutorial (TCP/IPEE) .
https://tools.ietf.org/html/rfc1180

© RFC2616-Hypertext Transfer Protocol-HTTP/1.1 (EBIUALHNN) -
https://wuw.rfc-editor.org/rfc/pdfrfc/rfc2616.txt.pdf

© RFC826-An Ethernet Address Resolution Protocol (LA MHIHERENTINI) -
https://wuw.rfc-editor.org/rfc/pdfrfc/rfc826.txt.pdf

© RFC792-Internet Control Message Protocol (.M HITE B ML) -
https://www.rfc-editor.org/rfc/pdfrfc/rfc792.txt . pdf

© FreeBSDEHFT XL
https://docs.freebsd.org/en/books/deve1opers—handbook/sockets/::,l

O HEERTII L.

OQ

https://docs.microsoft.com/en-us/windows/win32/winsock/

. T = R

https://tools.ietf.org/html/rfc1180
https://www.rfc-editor.org/rfc/pdfrfc/rfc2616.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc826.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc792.txt.pdf
https://docs.freebsd.org/en/books/developers-handbook/sockets/
https://docs.microsoft.com/en-us/windows/win32/winsock/

ZETR—RY

O FreeBSD'E /M
https://wuw.freebsd.org/
@ FreeBSDH X T
https://docs.freebsd.org/zh-cn/books/handbook/
© UNIXFFHEAS:
https://unix.org/
© UNIXHEX:
https://unix.com/
© Debian GNU/Linux'E 77 P

https://www.debian.org/

5, <

s
5
kQ

© Debian GNU/LinuxH* 3Tt S

https://www.debian.org/doc/user-manuals.zh-cn.html

https://www.freebsd.org/
https://docs.freebsd.org/zh-cn/books/handbook/
https://unix.org/
https://unix.com/
https://www.debian.org/
https://www.debian.org/doc/user-manuals.zh-cn.html

QO MingGW-w64 CIE S FF & R
http://mingw-w64.org/

Q VIMGHHET.A:
https://www.vim.org/

© K Visual Studio Codeff T.5:
https://code.visualstudio.com/

Q ¥k Visual Studioff & I 5%:
https://visualstudio.microsoft.com/

Q Libpcapi%:
https://www.tcpdump.org/

Q@ WinPcap#[:
https://www.winpcap.org/

@ npcapi%l:
https://nmap.org/npcap/

Q LibnetHH:

http://libnet.sourceforge.net/

http://mingw-w64.org/
https://www.vim.org/
https://code.visualstudio.com/
https://visualstudio.microsoft.com/
https://www.tcpdump.org/
https://www.winpcap.org/
https://nmap.org/npcap/
http://libnet.sourceforge.net/

1. RENE

o BHZIniE

§$
©

&

5 S

QQ

. T T

E1% T2

o FAMS: PTG (309%6) +HAARRET (70%)

o P Al 4:
o EHIRL (30%)
o TEMLHSR (20%)
o MIRALSE (20%)
o LIRS (30%)
o HATRALSA:
o Eik: HHEHIK

o BOIRSERPEE)

- B EIRBEE A
R VL SR)

o EBE: IR RAEUEN . FFEHK WIRHE)

November 15, 2021

&
&
O
X \Q
&

14 / 214

PSS b

o EHRL:
o RETIRFNES
o FREhLIXFIL04)
o SKUSALSN:
o F:1HE904)
o THEHEMTTCIR, fH104>
o FRENRAL, 1105
o EIRBMNREL, 1105
o BRIREWIH, ®WHI105)
o NREIZIHEAT, HIRFN1045)

November 15, 2021

15 / 214

/l_A\ $ Iﬁ

KA TR B A s a2
o BRENERTT3IX
o IRHHE SEAE L 31k
o IHZ MMM
o IRHHEINHRA IR it 31k
o HHLEHIR ARG
o EE TSR T 605>

: &
O
15 QO
N

QQ

November 15, 2021 16 / 214

2. LB GmAE A,

o ITHIL AL

5 S
y &
S
K

OQ

TTEILRST

THENL ARG B RGO R 50 R ER > ZH Ak

o FEIFARL: o B AL
o FHl o RYTEE
o HILAbIRER o BVERZE (Operating System)
(Central Processing Unit) : o BFIEE
IBHE (Arithmetic Logical Unit) o R
##lEF (Control Unit) o LRI
2 F77% (Register) o ERE G
o Fi#Ee% (Memory Unit) o TN
o BRI o IS
o HiA##& (Input Device) o NL7fE S
o HitHi%#& (Output Device) ° ... ’OQ@“L

. T T

2. LR IRmAEELA

o ITHEMLILE

5 S
y &
S
K

OQ

. T T

B

o % (Network) : —HiEHANEREEE - [mERle] [mEms | [mrEe |

o HERMZE (internet) : A RIHAHEIFAHIM N EL
PWALLEMZE (network) -

o EFRHEEMLE (Internet) : BEH L TAEEN
%% (Internet) -

o TFENLIML: KM EN. - BERE - BEE
BESFREAR RO, I B S B AR AT
BRI ZM AL -

Dmvrema] [merEme] [msrEms]

TSR S
; B
S

QQ

. Ty =

P 52 % Fe——[El 71

@ 19694, ARPA (Advanced Research Projects Agency) 3L T 4175 S AJARPANET
@ 19704, ARPANET#F TNCP (Network Control Protocol) ¥

@ 19814F, NSF (National Science Foundation) @l T CSNET, it A24{#H

@ 19834, TCP/IPANARPANETE J7

o 1983, ARPAMARPANETH 7 & HIMILNET, &% H{HH

o 10004F, NSFEIE [5 MBI EALAMAINSFNET, i | ARPANET

@ 19904F, IBM - Merit~ MCIEIZANS (Advanced Network and Services) , ZH

HANSNET
o 19954, NSFNET#: MBI R4 7
o 19955, HIHISP (Internet Service Provider) A&], #AtinternetiRss & @@Q’&

QQ

[S & fe——HE A

o 1986.08 H[ER} B e BEYIERAF 7Y BT 7E AL il TLE SR B H R & H— S i b

@ 1990.11 ETRIN A CNSEREN, RSS2 EINEIEEE R /RIEE R

@ 1094.07 \ER RS NFTRR P EZEEFMRPHTENM (CERNET) "4 M8

@ 1994.09 FR A EFF(E BRI IR T B A T EALEEK M (ChinaNET),1996.017F 1@

0 1996.02 ESFEAM T (i NRILFIE T EHLIE B M L% E PR i & g 118 E)

@ 1997.10 CNNICA 7 88— X H [HLBE N 48 & R LA B4R S
http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/200905/P020120709345374625930.

0 1997.12 AZHERAM T (VHEHUIE B W45 EFRER F] 22 2 (R 1 1%)

0 1998.06 CERNETIEF SN T —RIPHHX (IPv6)iftH: M6BONE &

o 2000.05 HERS LM (CMNET) IR AETT

@ 2000.07 A EEIE 2 T EALE R (UNINET) IR A8 ¢

http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/200905/P020120709345374625930.pdf

o EEA

© WIS (Entity) B (Protocol) JBI (w1 (#30 | | Bob (353%0) |
@ MBI EEIL £ (S

| mwas | KT

. T T

OSIH=7Y

OSWRZY, NI M ARG HEETY, 53 h:
@ RAZ (Application Layer)
© #RZ (Presentation Layer)
© 21%Z (Session Layer)
Q fZHi)Z (Transport Layer)
Q@ M4/Z (Network Layer)
O HERXZ (Data Link Layer) , NFREUERERZ
@ YFZ (Physical Layer)

CS)Q /
O
N
N

QQ

November 15, 2021 24 /214

My 1114
OSItEA— W3 =

YyE RSB B B eI AL, SR AUME R SR E, EERIE:

o EONBUFIE (Physical Characteristics of Interfaces and Media)
o I R (Representation of Bits)

o HEfEHIEE (Data Rate)

o _HH#IfI[EL (Synchronization of Bits)

o EEHAMENIE (Line Configuration)

o WHRFIEFY (Physical Topology)

o R EEMEZ (Transmission mode) °
] November 15, 2021 25 / 214

NG
S
Q\C
Q
N

OSITEA—BE % 2

BEBR 2 DLy U oI, 3B Hthop-to-hopfRSS, FERX
o SMMIEH (Framing)
o W It (Physical Addressing)
o Ush#E | (Flow Control)
o EEIRFEH] (Error Control)

o ilnj#E# (Access Control) LS

N
: &
5 S
N

QQ

. T T

My 1114
OSITEAR— R 4& =

W28 2R 4 M RIR R IS B0 S B fdhhh, $REEFMZE RS, FEX
o P It (Logical Addressing)
o M&ZHE (Routing) , XHRBEHIVAIA]

&
: &
S
£ S

QQ

OSHRTY ——{% i 2

fEhRR AR RN B A MR RS ThEE, FEEKIE:
o fIR& 1t (Service-Point Addressing)
o S EXIERL (Sementation and Reassembly)
o %] (Connection Control)
o ViBNHE | (Flow Control)
o EFIR¥EH] (Error Control)

A &
SO
N

QQ

. T T

OSIER—=1E R

G0 B HRaTE, FERE:
o XT1E#EH| (Dialog Addressing)

o [AZF#H#] (Synchronization)

November 15, 2021 29 /214

OSIEZ ——F IR Z

FoRERNE S N REEOE, FERGE
o FliE (Translation)
e /N (Encryption)

o E4g (Compression)

. T T

OSITEH——[FH 2

R ZR TR Mg B8, FERTE:
o EHI&UH (Network Virtual Terminal)
o WARZ (File Transfer, Access, and Management)
o HPHARSS (Email Services)

o H3XARSS (Directory Services)

& T
O
5O
N

QQ

. T =

TCP/IPHEZY

DU RS T EER
o NHE (Application Layer) o NHE (Application Layer)
o EHiZ (Transport Layer) o &HiZ (Transport Layer)
o M4%JZ (Internet Layer) o MZ%JZ (Network Layer)
o #MJZ (Network Interface o #E%/Z (Data Link Layer)
Layer) , XIRMZHEOZ o YHJZ (Physical Layer)

CS)Q /
O
N
N

QQ

. T T

N I 0
TCP/IPEE——E5 OSIZ [A]fA) % 7

NFZ
RRE
/ [Sail= SR
(S / {42 k2
fesi / 42 42
FILEHH 2 YR Y E
TCP/IPIZ 7! TCP/IPLZIA! OSI-tZRA!
K. TCP/IPIUJZ « HZFIOSILEZ B HIXK & Fas®
(&8
[ex

. T T

TCP/ P — (& 5y BT

o NMAZ: HE (Message)

o RHZ:
o TCPEWEE: (TCP Segment)
o UDP##E#R (UDP Datagram)

o MEZ: HUEM (Packet)
o HEREZ: HUEMWI (Frame)
o WHZE: HUEM (Bit)

. November 15, 2021 34 / 214

N I

TCP/IPEET] —— TP

o NHE:
o #HTTCP: HTTP. FTP. SMTP. POP3. IMAP - IRC
e 2TUDP: DHCP- DNS- NTP

o ZH#iZ: TCP. UDP

o M44Z: IP~ ICMP

o #MJZ: 802.3 (Ethernet) - 802.11 (Wifi%%) - PPP

& T
O
% N
N

QQ

. T =

N I 0
TCP/IPE——F k775K

o NHAZE: M AL (Application-Specific Addresses) , YRR FH4F E ik
o fFHIZ: Witk (Port Address)

o MEZE: BN (Logical Address)

o WEMEZ: WHMYE (Physical Address) , X FREERS i

o YHE

. T T

N I
TCP/IPRA—F ik 77 X —— 3 bt

o LAKR (Ethernet) MACHIHE
o K/ 65T (48fi)
o Fr: BEHEI6N 163 HIRRITFTT
o /~fl: FF:FF:FF:00:11:22
o HUN|. FI3DFTAHAME—FRMA (OUl) , HIEEESEL4AHA

o EE AT HLocal Talk 4% {8 FH 157 A #bHE

. T T

N I 0
TCP/IPIRAI—F 41k 77 s —— 2 bt

IPHBIE:
o |Pv4

o |IPv6

&
y &
§§
K

QQ

. T T

TCP/IPHA——F 41k 77 S —— B M i ——IPv4

o FRE o FEERMiHE
o HUEEN: 4FTERIEUE o FAEHikE
4r: 0x7f000001 @ 10.0.0.0-10.255.255.255
o FRA: AT s 172.16.0.0-172.31.255.255
e 127.0.0.1 » 192.168.0.0-192.168.255.255
g o [HIERHBHE: 127.0.0.0-127.255.255.255
o S o ERENL FEEN - HikkiE: 0000
o AZ: WZHbhE (0FFk, 8fir) +FEHLHbE o ML
(24fi1) @ 255.255.255.255
o B MLgHibE (10773, 1607) +FHLHhE o ENHEEEL
(1647 o HUIEHLL
o CJ: FZEHAE (110K, 24f0) +FEHHbhE
(8fir)

o D WHiEHHE (11107F3%)
o EX: {RE#HE (11110F3%)

&
&
O
S
&

. T T

TCP/IPEE—F k77 N —— i ——IPv6

o KRR
o BfEA: 167 T EAIEIE
o FARIE:
%: 0000:0000:0000:0000:0000:fffF:7f00:0001 ~ ::ffff:127.0.0.1

o FFrkiil:

. T = R

TCP/IPHER —Sik 77 = — Ok

i (Port) , fEFH2FTT (1601) Fox, BUETEEH0-65535
B LY
@ HTTP: 80 (TCP)

FTP. 21 (TCP)

@ RTMP: 1935 (TCP)

DNS: 53 (68)

e DHCP: 21 (68) et

TCP/IPIRA—F 41k 77 = —— R bk

o [ufHtL:

40: http://www.bbc.edu.cn
o HEAEHIYL:

U0: 10060502@qq.com

& S
& &

§§
S

OQ

2.

¥ 45 g RE L At

o NN AL

SAHRG

5 S
y &
S
K

OQ

November 15, 2021 43 / 214

AWM

ARG S AE MR R ENLLE - B2 AT
e H B Tl E M E R RS -

N
QQ

] November 15, 2021 44 / 214

EREFAE

o XK
o i 4 fRAt4p
o MREMAL

November 15, 2021 45 / 214

o HEKII%E
o REIZ NAELFA

° RS

November 15, 2021 46 / 214

K REE%

o IZAEERM:
o %%XE
o ik

o AFLU:

Z PSRRI HEALM L,
it BEITTAATE
B R B A (e
[P 28 A RN 1 R 55

November 15, 2021

A
QQ

47 / 214

N I .5
T e Bk i

o FAME: HNEEHIML - HrlEl:

o FFHUME: WIRFC~ W3C

o AN WIWLEME . FEEME . W]

o (RAEME: AFEHIYI IR B IRAEE - B BB BRI AR
2~ R RENIST

o ZERME: WIRRIIECRE « MR - BPEAE - SRIKE - TUREAN

o HA&RME: WHEFL . EHFED

o EHAME: NVFRLERANE - ALEFERANE FAEANE - EHEANE
BRI A < B AT - MEREERANE - YgEEEATE e

o UEME: WIFEHME . ot St
B T T

QQ

2. M4EIREEEL A

o RLHA

. November 15, 2021 49 / 214

PIERRTY

=Mt
o BRI MA ARG
o HEXM MR
o HUHN ARG

. Ty T

YRR B4 5t R

AR R Y0 BB /M BBk
H10-100 45 AL, 5 HEKMIERIHE
PR R &R

[| M|

E: R ARG

&
&
O
\Q

QQ

WIERH—— BRI 5 R

TR 53 A 2R G E T FLB MR T AU
HiERE, AR ESRBS ARG
kg5

E: BRI ARG

November 15, 2021

52 / 214

IR % (R R RS

LR AL

o BEhitHE
o EAARTETTHE
o mItHE

E: B MRS

November 15, 2021

SRR SUADINES
JEESEE (What) - JBETEAE (How) - FMETE (Which) - WENE (Where) :
o T ARL o HFREE: o BARSS A A o LIRSS
o R o BT (Socket) o K o ETERE
o L o R o Mt o BN
o 45 o ER RN o FFEEXAE: o BENftIE
o T [1A L 1 o TRV o WEIE
o X% (RPC)
o A o FERLITIEIA
o W% (RMI)
o (A1 H
o AR
o HATTH
> MBI Sl
o AR o
e

o NHAILZENRE

2 P R 25 S A U

AR /RSS2 (C/S, Client/Server) 45 X%

R4 2%
& P50 & N
& il

AN
&
O
X Q
R

OQ

K SR LR XS

HWAVINTEE (P2P, Peer to Peer, Point to Point) 454 X%
B2 < RN

gkl

. Ty T

LEA T — 2B AR

o TPRIRALE
o JRIRIEALER

o HEF
o UH
o i

LEF R TERIE R —— 9 R R R EEF

o ERREEN. WEMRZEIX

R A AR S5
H A fF

BIEAS

G

. Ty T

LRI — SRR A —— R IR R G5 1

JRIRAE R LEN . WHEDIREN B
o FriZH: M
o NHIEH: V55 EH
o BiEBH: FFALFE

2 Q
y &
&

QQ

. Ty T

& S
5
S

shEra R sE RS —— R IR R
e
LR B LR
T
R i
N }Eﬁ \giu
R W e
e

November 15, 2021

OQ

60 / 214

LEMIIR A — SR A —— R IR A R G

R R 55 2 Rl 55 2

| FoREd | B2 | B2 |

FRBHE H—| RFEH

November 15, 2021

}:l

DN
&

61 / 214

2. ML ImAE AR

o MM

&
O

I \Q
&

. T T

N JZ

o Windows#(ERST
Winlnet
WinHttp
@ Http Server API

©

<

o .Net Core

o BF¥H
@ libmicrohttpd
o libhttpd

o libsoup Ca®

QQ

. T T

L2

o Windows#{ERYE

o WindowsE#5 (WinSock)
o BF¥H

o BT (Socket)

o libevent

o libev

. November 15, 2021 64 / 214

W 2% J2

o Windowst{ERSE
o WindowsE#HEF
° BVH

o BT

. T T

HERE R

o Windowst{ERSE

o WindowsE#F
o WinPcap

° E’%‘”Zﬁ

o EREF
o libpcap

o libnet

November 15, 2021

66 / 214

2. MZgmAEELA

o AL

&
O

I \Q
&

. T =

HAM S

’ Javail B 7

\ [ca=mr

I

Javai®t F N

BF&A

KA

CE 5 MM EBF %O

[

BERGENMARFED

[

BERSEAEREFED

[

WP A

5

P T R AR

November 15, 2021

68 / 214

HAM S

TF RIS

AR F R HA R VE = R RS G V8 R URES
(x.py) (x.java) (x.c)
T
AR F R RIFEERERT
(javac.exe) (gcc.exe)
T
fRREE E AR MIFEENARR
(x.class) (x.exe)
I
BRATRRER | | BREERRER
(python.exe) (java.exe)
I I
R F BT R F AT
(_socket.pyd%) (jli.dn=s
OO E T N OE
(msver100.dI1%)
\ B(E £ 4%
I
\ o F A
[8: FF R IAEE

November 15, 2021

69 / 214

fEF 5
B CPUT- 65

HIELHETEN

(Complex Instruction Set Computer, CISC) :

@ Intel i386/i486/i586/i686, x86_64
@ amd64

K Te & BT
(Reduced Instruction Set Computer, RISC) :

@ ARM -~ AArch64
@ MIPS -~ MIPS64 - MIPSEL - MIPS64EL
@ RISC-V

November 15, 2021 70 / 214

BIERG

THIRALE:
o Debian 8/9/10
EM: https://debian.org
@ FreeBSD 11/12
BF: http://freebsd.org

kRS
@ Microsoft Windows
SHERRA: XP/7/8.1/10
FRSSHA: Microsoft Windows Server
2003/2008/2012/2016,/2019
#EFE: Windows Server 20035Window XP
@ Apple macOS
‘BM: https://www.apple.com/macos

%13&: https://support.apple.com/en-us/HT2012

November 15, 2021 71/ 214

https://debian.org
http://freebsd.org
https://www.apple.com/macos
https://support.apple.com/en-us/HT201260

R LKA

TFIRERAE:: [ERIA7¢EH
@ Oracle VirtualBox @ Microsoft Hyper-V
'BEM: https://virtualbox.org @ VMWare
HEFF: v4.0.24 (SHFXP)
@ gemu

BEM: https://qemu.org/
Hfth: https://qemu.weilnetz.de/
HEFE: v20160903 (SCFFXP)

https://virtualbox.org
https://qemu.org/
https://qemu.weilnetz.de/

Yt T 5

IR
o C

o Go

R
@ Java

@ Python

November 15, 2021 73 / 214

FRNE—RiF T E—CES

o Windows

fFFmingw-w64 « mingw32-make - gdb

‘EM: http://www.mingw-w64.org

#ETE: i686-win32-dwarf, https://sourceforge.net/projects/mingw-w64/file
@ Debian GNU/Linux

¥ Hgcc ~ make~ gdb

apt-get install build-essential
@ FreeBSD

ffFclang -~ make-~ gdb

http://www.mingw-w64.org
https://sourceforge.net/projects/mingw-w64/files/

FFANGE—RiE LB e =
@ Windows
] J:FY}}?:

'BEM: http://openjdk.java.net/
#7#: Java SE 7(Windows i586 Binary), https://jdk.java.net/java-se-ri/7
o ﬁﬂ

ER: https://www.oracle.com/java/technologies/javase-downloads.html

@ Debian GNU/Linux

IRIN T %% OpenIDK
@ FreeBSD
A EZFOpen)DK
&
GO0
QQ

http://openjdk.java.net/
https://jdk.java.net/java-se-ri/7
https://www.oracle.com/java/technologies/javase-downloads.html

RS R

o VI

Emacs

Microsoft Visual Studio Code
e ATOM

Sublime

WindowsiZ Z 7%

November 15, 2021 76 / 214

M ZL 31

#itH Hello World
o RIS
src/hello.c
1 |#include <stdio.h>
2 |int main(void)
34
4 printf (" Hello.World\n");
5 return 0;
6|}
o YRE
1 |hello:
2 i686 —w64—mingw32—gcc —Wall —g —o bin/hello.i686
.exe hello.c
3 x86_64 —~w64—mingw32—gcc —Wall —g —o bin/hello.
amd64.exe hello.c
o JEIT

src/bin/hello.i686.exe

src/hello.c
src/bin/hello.i686.exe

2. M4EIREEEL A

&
y &
§§
K

QQ

. T =

]
pull
B
&

o I
o C

@ Java

November 15, 2021

79 / 214

VB I8 b —— I B iR

o il
o il
o\l
o N
o L H
o TR Ny H At
o FLhFE L A i
o L)\l EE 30 sl
o LR 7N lEE Jyafs k]
o %>
o 4955 7N i
o Ox20%% Hy 13t
o 0x65%57 — it

&

~

7 6 5 4 3 2 1 0

P

S

TN

4§ S
S

%

November 15, 2021 80 / 214

BE#EE—CES
. iRz s) i FH R AL
o HHRTY o FHSIZH o T o iy AFH
o FHHT o B o iFE o TS
o HrHKT o F5iZH o fEIR
o HIENER o fREHZH
o TREFHRMY o BARIZE
o KRFIZH
o IEAIEE
o BHIZE
o FMizE
o IKX{H;ZH
o E5EH o
VR src/syntax_c.c ;@@’
e

. T =

src/syntax_c.c

HERT

N Ay 1A > A
EEREE CE=

EAE: BURRE ZEAPR[=EUEVIE];
o BUERTY (EAKIERT . TTHIERE)
o FHFRA
o HUHRMY
o HIESKA
o fRETRA

. T = e

B E B —CiE 5 — AR R A

o IFTEEECRAL char 0xff000000

24‘ char bl = —1; H bl Oxff

0xff000001 0xff000002

b2

0xff000003 0xff000004 0xff000005 0xffO00006

@ 2FTEEERTAL: short int

27‘ short int b2 = 0x0102; H

© 2/AFTTHHRAL. int b4 [0x04 [0x03 | 0x02 | O0x01]
30 ‘ int b4 = 0x01020304; H 0xff000007 0xff000008 ~ 0xff000009 0xff00000a
b8 [0x02 | 0x00 | 0x00 | 0x00 |

o 4/8FHEEHRAY. |
/ : e 0xff00000b 0xff00000c 0xff00000d 0xff00000e

33‘Iong int 14 = 0x04000001; H [ox01 [ox00 [0x00 | 0x00 |

o BFTREALETL: long long int [41: BfE27

36‘ long long int b8 = 0x0100000002; H

o AFTSHRA: float

43‘ float f = 3.1; H

o 8FSHAL double

46‘ double If = 3e8; H

. T T

BEEE—CHEE—

o HUFFIFRIRAY: char

49 char ch = '1";

52 | wchar_t wchl =
0x4e00 ;
53 | wchar_t wch2

0x9fa5;

o REETFAFHREA: char *

116 | char xs = "123"

: LinuxREE Fwehar t 4577

FAFEERA

0xfe000000

o [oar]

0xfe000001 0xfe000002

wehl [0x00 [Oxde |

0xfe000003 0xfe000004

weh2 | Oxa5 | 0x9f |

0xfc000009 0xfc00000a 0xfc00000b 0xfc00000c

stmp| 0x31 [0x32 | 0x33 | 0x00 |

0xfc00000d 0xfc00000e 0xfc00000f 0xfc000010
s | ox09 [ox00 [ox00 | oxfc |

CIEZEES

r

S
&
DRI
QQ

November 15, 2021 84 /214

B —CiE s —&UEHRE

o —YEMUE: K TRELE MY

70‘ int arrl[4]; H

73

char arr2[4] = {0x31, 0x32}; H

o THUR. X TRIF|
76 | char arr3
[2][4]={{1.2.,3.4},{5.6,7,8}}

0xfd000000 0xfd000001 0xfd000002 0xfd000003

a0 o7 [ox?? [ox?? | 0x? |

0xfd000004 0xfd000005 0xfd000006 0xfd000007

aril] 72 [2 [o [|

0xfd000008 0xfd000009 0xfd00000a 0xfd00000b

a2 [0w [[]

0xfd00000c 0xfd00000d 0xfd00000e 0xfd0O0O0OOf

ariB] 77 [0w [n [|

0xfd000010 0xfd000011 0xfd000012 0xfd000013

a2 [0x31 | 0x32 | 0x00 | 0x00 |

0xfd000014 0xfd000015 0xfd000016 0xfd000017

ar3[0] 0x01 | Ox02 | O0x03 | O0x04 |

0xfd000018 0xfd000019 0xfd00001a 0xfd00001b

arm3[1][0x05 | O0x06 | Ox07 |

CRTOET:

November 15, 2021 85 / 214

BE N —CiE S —H € CRA

o LEHRAY:

82
83
84
85
86
87
88

91
92
93
9

struct acnt {
unsigned int id;
char name[8];
char pass[8];

b

struct acnt acntl = { 0, "Zhang", "123"

acntl.id = 1;

struct auth {
unsigned long long token;
unsigned char is_expired;

b

o BRI

99
100
101
102

union ip {
unsigned long b32;
char b8[4];

b

o MHHAL enum
o HBITE . typedef

November 15, 2021

86 / 214

BERN—CE S — R

o WIS

109 ‘ int xpb4 = &b4;

o KrAfRE:
112 | int sparrl = arrl;
113 | xparrl = 1; parrl[1] = 2; =*(

parrl+42) = 3;

o TR TR EIE

116 | char xs = "123";

o FtTRE

119 struct acnt xpacnt = &acntl;
120 | pacnt—>id = 2; (*xpacnt).name
[0] = O;

o WR¥FRE

122 | void (xphello)(void);
123 phello hello; phello();

0xfc000001 0xfc000002 0xfc000003 0xfc000004

pb4 [0x03 | O0x00 | Ox00 | Oxff_ |

0xfc000005 0xfc000006 0xfc000007 0xfc000008

parl] 0x00 | 0x00 | 0x00 | Oxfd |

0xfc000009 0xfc00000a 0xfc00000b 0xfc00000c

stmp[0x31 | 0x32 | 0x33 | 0x00 |

0xfc00000d 0xfc00000e 0xfc00000f 0xfc000010

s [09 [0x00 [0x00 | Oxic |

TRERY

November 15, 2021 87 /214

5
pull
B
&

o HARIZH.
o RAIBH:
o HALEH.:
o BHLAH: 1.
o FAHBH.
o IR{EIZH.:

TEEE

&l

]

ClEE—4uEzH
0~
4 -
4 -
S | NN N 3

¥/ Y% 4 -
==-l=" <<=+ > >=
R
&& - |

LK< >>

= Fm = Y= = = &=

N LL=N >>=

2 K\
&
QQ

QQ

November 15, 2021 88 / 214

November 15, 2021

89 / 214

o M Nt o XHixE o FHHE o NHFFT
@ printf o fopen @ strlen @ memset
o scanf o fclose e strcpy ® memcpy
e puts o fwrite e strcmp @ memcmp
@ gets o fread @ strchr @ memchr
o fputs o fseek @ strcat
o fgets o ftell
@ sprintf @ popen r '@G
@ sscanf @ pclose '09\@

. T T

November 15, 2021

§$
©

&

5 S

QQ

o1 / 214

N o
EAR

BT (Socket) , MIKMARHIERET (Berkeley Socket)
o HILFIERET IR T 1983F £ 1TH14.2BSDEAER S
o HFLHEREFALE T 1994F X 174.4BSD-LiteFl1995F & 1T
f"4.4BSD-Lite2

@ FreeBSD - NetBSD -~ OpenBSD

CS)Q /
O
N
N

QQ

. T T

o T1ERH

November 15, 2021

§$
©

&

5 S

QQ

03 / 214

TAERH

o —IJTH: fREbhIN, MLEHILE, Uik

o HiytdH: fEHuthil, SRIRMEHnE, B, BIrMgHat, H
i

o (BET, EETHML (FFhWbhil, MHhl, 3O)

N
QQ

. November 15, 2021 04 / 214

o BEIETE

&
&
O
\Q

QQ

. T T

ERFHE—IRE (Mingw)

o BREGEH:

1009 WINSOCK_API_LINKAGE int

WSAAPI WSAStartup (WORD

wVersionRequested ,LPWSADATA IpWSAData) ;

o BB

o Windows EH: 7

13 | typedef struct WSAData {
14 WORD

15 WORD

16 |#ifdef _WIN64

17 unsigned short
18 unsigned short
19 char

20 char

21 char

22 |#else

23 char

24 char

25 unsigned short
26 unsigned short
27 char

28 |#endif

29 |} WSADATA, +LPWSADATA;

wVersion ;

wHighVersion ;

iMaxSockets ;

iMaxUdpDg ;

«IpVendorinfo;

szDescription [WSADESCRIPTION LEN +1];
szSystemStatus [WSASYS_STATUS.LEN+1];

szDescription [WSADESCRIPTION LEN+1];
szSystemStatus[WSASYSSTATUS_LEN+1];
iMaxSockets ;

iMaxUdpDg ;

«IpVendorinfo;

November 15, 2021

96 / 214

ERFE—IFRE (Mingw)

o IZI@U::SEU%

1010 ‘ WINSOCK_API_LINKAGE int WSAAPI WSACleanup(void);

. T T

ERTFE—RER R —B G

1 |#if defined (WIN32)

5

2 #include <winsock2.h>
3 |#endif

4

5 |[#include <stdio.h>

6

7 [int main(void)

8 |{

9 int r=0;

10 |#if defined (WIN32)

1 WSADATA wsa_data;

12 r = WSAStartup(0x0202, &wsa.data);

13 if(01=r) {

14 printf("WSAStartup_err: %d\n", r);
15 }

16 |#endif

17

f defined (WIN32)
r = WSACleanup() ;
20 if(0l=r) {
21 printf("WSACleanup_err: %d\n", r);

23 [#endif

25 return r;

. T T

BT E—RE R —R 5

S

43 |int tx_socklib_startup ()
44 |{
45 |#if defined (WIN32)

46 WSADATA wsa_data;

47 return WSAStartup(0x0202, &wsa_data);
48 |#else

49 return 0;

50 |#endif

51 |}
52
53 |int tx_socklib_cleanup ()
54 | {
55 |#if defined (WIN32)

56 return WSACleanup();
57 |#else

58 return 0;

50 |#endif

60 |}

November 15, 2021

99 / 214

ERTE

AwMERES
o 1THF: socket
@ KHl: close
o 4REHIL: bind
o FFIAMINT: listen
o W accept
o FFIRTERE: connect
o HUHIE: recv
o RiEHHE: send
o FRHUETN: getsockopt
o IHEILIN: setsockopt

N B A

WindowsE#EF

e 1TH: WSASocket

@ KMl: closesocket

o GREMIE: bind

o JFURMINT: listen

o BAEEE: WSAAccept

o JHR%EHEE: WSAConnect

o BEWEE: WSARecv

o KiA¥HE: WSASend

o FREGETI: getsockopt

o WHIEII: setsockopt @@“’&
o FENEIAHIE WSAStartip

NE S 170Nl By ol Y B Sy N == \AI~ A
November 15, 2021 100 / 214

o FEIRALIH

&
O

I \Q
&

. i D, A

R F— RIS RS (Mingw)

° IZI%'?&EEEE

1012 ‘ WINSOCK_API_LINKAGE int WSAAPI WSAGetLastError(void);

. i 3, A

RS H—IR AR IR IR 5 —— R A 5

115
116
117
118
119
120
121

#if defined (WIN32)
#define tx_sock_get_errnum () WSAGetLastError ()
#define tx_sock_get_herrnum () WSAGetLastError ()
#else
#define tx_sock_get_errnum () errno
#define tx_sock_get_herrnum () h_errno

#endif

<
S
Q
N

QQ

. i 3, A D

N
RO HE—R B 1Rm S (Mingw)

° IZI%'?&EEEE

1011 WINSOCK_API_LINKAGE void WSAAPI WSASetLastError(int iError);

. T T

iR H—— X BRI —— R A

123 |#if defined (WIN32)
124 #define tx_sock_set_err_num (_num) WSASetLastError(
_num)
125 |#else
126 #define tx_sock_set_err_num(_num) (errno = (_num))
127 |#endif
@O\@C

. i 5, A3

EIRGCH—KIEIRE R (Mingw)

o REE:
#tdefine FormatMessage _MINGW_NAMEAW(FormatMessage)

1345

WINBASEAPI DWORD WINAPI FormatMessageA (DWORD dwFlags, LPCVOID
LPSTR

1342
IpSource , DIWORD dwMessageld, DWORD dwlLanguageld ,

IpBuffer , DWORD nSize, va_list xArguments);

WINBASEAPI DWORD WINAPI FormatMessageW (DWORD dwFlags, LPCVOID

1343
IpSource , DWORD dwMessageld, DWORD dwlanguageld , LPWSTR
va_list xArguments);

IpBuffer , DWORD nSize,

November 15, 2021 106 / 214

IR H—IRAGE IR (G B —— R A3

129
130
131
132
133

134
135
136

137
138
139
140

#if defined (WIN32)

char xtx_sock_get_errstr(int num)
{

char xpbuf = NULL;

FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL,
num, 0, (LPSTR)&pbuf, 256, NULL);

return pbuf;

}
#define tx_sock_get_herrstr(_num)
tx_sock_get_errstr(_num)
f#else
#define tx_sock_get_errstr(_.num) strerror(_num)
#define tx_sock-get_herrstr(.num) hstrerror(.num)
#endif

November 15, 2021

S
S
5

QQ

107 / 214

B H—RE R IR (E B —— R A

142 |#if defined (WIN32)

143 void tx.sock_free_errstr(char x_str)
144 {

145 LocalFree(_str);

146 }

147 |#else

148 #define tx_sock_free_errstr(_str)
149 |#endif

CS)& /
O
N
N

QQ

. i 5, A S

SN =|
H R

A FE—FEFP 7R 5

1 #include "tx.h"

2

3 int main(void)

4

© o ~ o o

int r = 0;
r = tx_socklib_startup();
if(0l=r) {
char #p = tx_sock_get_errstr(r);

printf("tx_sock_open.err: %, Y%s\n", r, p)

}

r = tx_socklib_cleanup();

if(0l=r) {
int r = tx_sock_get_errnum ();
char #p = tx_sock_get_errstr(r);
printf("tx_sock_open_err: %d, %s\n", r, p)
tx_sock_free_errstr(p);

}

return r;

November 15, 2021

109 / 214

o UIFHEA

November 15, 2021

§$
©

&

5 S

QQ

110 / 214

A —RELE L (Mingw)

10 |#if 1

11 | typedef UINT_PTR SOCKET;

12 |#else

13 |typedef INT_PTR SOCKET;

14 |#endif

15

16 |#define INVALID SOCKET (SOCKET)("0)
17 |#define SOCKET_ERROR (-1)

S
S
5

QQ

A —T I

o PRELFEAA:
110 |/« Create a new socket of type TYPE in domain DOMAIN, using
111 protocol PROTOCOL. If PROTOCOL is zero, one is chosen
automatically .
112 Returns a file descriptor for the new socket, or —1 for
errors. %/
113 |extern int socket (int __domain, int __type, int __protocol)
_THROW;
o X[HER

<
S
Q
N

QQ

AR —FTIF (Mingw)

1001 WINSOCK_API_LINKAGE SOCKET WSAAPI socket(int af,int type,int

protocol);

961 |#define WSASocket _MINGW_NAME AW (WSASocket)

1052 WINSOCK_API_LINKAGE SOCKET WSAAPI WSASocketA(int af,int type,
int protocol ,LPWSAPROTOCOL.INFOA I[pProtocollnfo ,GROUP g,
DWORD dwFlags);

1053 WINSOCK_API_LINKAGE SOCKET WSAAPI WSASocketW(int af,int type,
int protocol ,LPWSAPROTOCOLINFOW IpProtocollnfo ,GROUP g,
DWORD dwFlags);

4
S
Q\"
QO
QG

o JRME: SCHHEA
. i 3, A6

A ——K

o IZI@U::SEU%

356 |extern int close (int __fd);

November 15, 2021

114 / 214

SAEEA——KF] (Mingw)

o IZI@U::SEU%

975 ‘ WINSOCK_API_LINKAGE int WSAAPI closesocket (SOCKET s);

A ——eR BB 5

62
63

64
65
66
67
68
69
70
71
72
73
74
75

#if defined (WIN32)

#define tx_sock_open(domain, type, protocol) WSASocket ((
domain), (type), (protocol), NULL, 0,
WSA_FLAG_OVERLAPPED))

#else
#define tx_sock_open socket

#endif

int tx_sock_close(int _sock)
{
#if defined (WIN32)

return closesocket(_sock);
#else

return close(_sock);
#endif
}

November 15, 2021

116 / 214

R ——RE s B ——T T

src/sock_open.

1 #include
2

"tx . h"

3 int main(void)

4 {

~ o o

tx_socklib_startup():

printf("sizeof (tx_sock_t): %lu\n", (unsigned long)

sizeof (tx-sock-t));

int n=1;

tx_sock._t sock;

do {
sock = tx_sock_open (AF_INET, SOCKSTREAM,

IPPROTO_TCP) ;

printf("%d..sock: %ld\n", n, (long)sock);
N+

} while (sock <0)

tx_socklib_cleanup ():

return 0;

November 15, 2021

117 / 214

src/sock_open.c

N
SR ——RE 7 7R i ——<]

src/sock_close.c

#include

int main

{

"tx.h"

(void)

tx_socklib_startup();

tx_sock_t sock;

sock = tx_sock_open (AF_INET, SOCKSTREAM, 0);
printf("sock: %ld\n", (long)sock);
tx_sock_close (sock);

tx_socklib_cleanup();

return 0;

November 15, 2021

118 / 214

src/sock_close.c

o HbikZEHE

§$
©

&

5 S

QQ

. T T e

Hb k4544

o IPVAEFEFHINEAENY: struct sockaddr_in
o IPV6EEEFHIELEF . struct sockaddr_in6

o JEFEREFHINLLEM: struct sockaddr
o JHHEEFHULFFALE: struct sockaddr_storage

CS)Q /
O
N
N

QQ

120 / 214

U HE 25 A —— I PVvAE R F i Tk 2540

238 | /+ Structure describing an Internet socket address. x/

239 |struct sockaddr_in

240 {

241 _SOCKADDR.COMMON (sin.);

242 in_port_t sin_port; /* Port number.
*/

243 struct in_addr sin_addr; /+ Internet
address. %/

244

245 /% Pad to size of ‘struct sockaddr'. x/

246 unsigned char sin_zero[sizeof (struct sockaddr) —

247 _SOCKADDR_COMMON_SIZE —

248 sizeof (in_port_t) —

249 sizeof (struct in_addr)];

250 +

November 15, 2021

121 / 214

Ho 254 \PVAEEF HIE4ER (Mingw)

75 |struct sockaddr_in {

76 short sin_family;

77 u_short sin_port;

78 struct in_addr sin_addr;
79 char sin_zero [8];

80 | };

CS)Q /
O
N
N

QQ

Hihb2E R |Pv6E R HE 454

253 | /+ Ditto, for IPv6. x/

254 |struct sockaddr_in6

255 | {

256 _SOCKADDR.COMMON (sin6_);

257 in_port_t sin6_port; /+x Transport layer port #
«/

258 uint32_t sin6_flowinfo; /+ IPv6 flow information
*/

259 struct in6_addr sin6_addr; /x IPv6 address x/

260 uint32_t sin6_scope_id; /x IPv6 scope—id x/

261 ¥ S

. i 5, A

R, -1
HiHEEE) ——IPve EREFHINELE T (Mingw)

41
42
43
44
45
46
47
48
49
50
51
52
53
54

struct sockaddr_in6 {
short sin6_family;
u_short sin6_port;
u_long sin6 _flowinfo;
struct in6_addr sin6_addr;
__C89_NAMELESS union {
u_long sin6_scope_id;

SCOPE_ID sin6_scope_struct;

typedef struct sockaddr_in6 SOCKADDRL.NG;
typedef struct sockaddr_in6 xPSOCKADDR.NG;

typedef struct sockaddr_in6 *xLPSOCKADDR.NG;

November 15, 2021

124 / 214

k£

169
170
171
172

173
174

1 &R T H k25

/x Structure describing a generic socket address. x/

struct sockaddr

{
SOCKADDR.COMMON (sa); /x Common data: address
family and length. x/
char sa_data[14]; /* Address data. x/
}

<
S
Q
N

QQ

. i 5, A B3

Mol S5 H——iB HE R T AR E5H (Mingw)

70 | struct sockaddr {

71 u_short sa_family;
72 char sa_data [14];
73 |}

& T
O
15 QO
N

QQ

. i 3, A)

Hohik G5 ——8 FH B R T b kA7 B 45

177 | /x Structure large enough to hold any socket address (with

the historical

178 exception of AF_.UNIX). x/

179 |#define __ss_aligntype unsigned long int
180 |#define _SS_PADSIZE \

181 (-SS_SIZE — _SOCKADDR_.COMMON.SIZE — sizeof (

__ss_aligntype))
182

183 | struct sockaddr_storage

184 | {
185 _SOCKADDR.COMMON (ss_); /* Address family ,
*/
186 char __ss_padding [-SS_PADSIZE];
187 __ss_aligntype __ss_align; /x Force desired alignment
*/
188 }

November 15, 2021

127 / 214

k25— H EREF LA 68T (Mingw)

254
255
256
257
258

259
260
261
262
263
264
265
266

#define _SS_MAXSIZE 128
#define _SS_ALIGNSIZE (8)

#define _SS_PADISIZE (_SS_ALIGNSIZE — sizeof (short))
#define _SS_PAD2SIZE (_SS_MAXSIZE — (sizeof (short) +

_SS_PADI1SIZE + _SS_ALIGNSIZE))

struct sockaddr_storage {
short ss_family;

char __ss_padl[_.SS_.PADISIZE];

__MINGW_EXTENSION __int64 __ss_align;

char __ss_pad2[_.SS_.PAD2SIZE];

November 15, 2021

<
S
Q
N

QQ

128 / 214

of

lil5g

November 15, 2021

&
&
O
\Q

QQ

129 / 214

e Kifi (Big Endian)

o /N (Little Endian)

. i 5, A

o ENLFTIME: Kimsi i
o K¥ii: mips~ alpha~ m68k
) /J\ﬁﬁu:j: x86

o MILEFIIMTY: K

. T T

F I —F A f—7%

369 | /+ Functions to convert between host and network byte

order.

370

371 Please note that these functions normally take
unsigned long int’' or

372 ‘unsigned short int’' values as arguments and also
return them. But

373 this was a short—sighted decision since on different
systems the types

374 may have different representations but the values are
always the same. x/

375

376 |extern uint32_t ntohl (uint32_t __netlong) _THROW
__attribute__ ((--const__));

377 |extern uintl6_t ntohs (uintl6_t __netshort)

378 _THROW __attribute__ ((-_const__));

379 |extern uint32_t htonl (uint32_t __hostlong)

380 _THROW __attribute__ ((-_const__));

381 |extern uintl6_t htons (uintl6_t __hostshort)
382 _THROW __attribute__ ((-_const__));

. (e

T M —— A

393 |# if _BYTE_ORDER = __BIG_ENDIAN

394 | /x The host byte order is the same as network byte order,

395 so these functions are all just identity. x/

396 |# define ntohl(x) (x)

397 |# define ntohs(x) (x)

398 |# define htonl(x) (x)

399 |# define htons(x) (x)

400 |# else

401 |# if _BYTE.ORDER == __LITTLE_ENDIAN

402 |# define ntohl(x) __bswap_32 (x)

403 |# define ntohs(x) __bswap_16 (x)

404 |# define htonl(x) _-bswap_32 (x)

405 |# define htons(x) _-bswap_16 (x) .
406 |# endif # \@@“’V
407 |# endif &

. i 3, A D

I P ——H& =L He——Mingw

982 WINSOCK_API_LINKAGE u_long WSAAPI htonl(

u_long hostlong);

983 WINSOCK_API_LINKAGE u_short WSAAPI htons(

u_short hostshort);

989 WINSOCK_API_LINKAGE u_long WSAAPI ntohl(

u_long netlong);

o,

990 WINSOCK_API_LINKAGE u_short WSAAPI ntohs(&“’@&

u_short netshort);

R i 5, R

N ——BR AR 5

src/tx.h
220 |void tx-mem_dump(void x_buf, size_t _buf_size)
221 | {
222 for(int i=0;i<(-buf_size); i++) {
223 printf("%#x,.", ((unsigned charx)(_buf))[i
1)
224 }
225 printf("\n");
226 |}
QO\@C

. i 5, B

src/tx.h

F N —E R

src/byte_order.c

1 |[#include "tx.h"

2

3 |void byte_order ()

41

5 union {

6 unsigned short n;

7 unsigned char c[2];
8 Yoy

9 y.n = 0x1234;

10 printf ("Y%#x\n", y.n);

1 tx_mem_dump(&y, sizeof(y));
12

13 if (y.c[0] = 0x34) {

14 printf("little _endian\n");
15 } else {

16 printf("big_endian\n")
17 }

18|}

19

20 |int main(void)

21 |{

2 byte_order () ;

23 return 0

2|}

. i 5, A ED

src/byte_order.c

o M4&HE

§$
©

&

5 S

QQ

. e T

YA 2% 1t

o IPvAMZEHbE: struct in_addr

o IPV6ZEFHitik: struct in6_addr

November 15, 2021 138 / 214

N
¥R 4% 1t 1k ———1 Py 4 [28 1 1k

29 | /x Internet address. x/
30 |typedef uint32_t in_addr_t;

31 | struct in_addr

32 {
33 in_addr_t s_addr;
34 };

. i 3, A

N 11
WA 28 b 1 ——1Pv4 R 28 H iE——Mingw

17
18
19
20
21
22
23
24
25
26
27
28
29
30

typedef struct in_addr {

union {

struct { u_char s.bl, s.b2, s_b3, s_b4; } S_un_b;

struct { u_short s.wl, s.w2; } S_un.w;
u_long S_addr;
} S_un;
} IN_.ADDR, *PIN_.ADDR, *LPIN_ADDR;

#define s_addr S_un.S_addr

#define s_host S_un.S_un_b.s_b2
#define s_net S_un.S_un_b.s_bl
#define s_imp S_un.S_un_w.s_w2
#define s_impno S un.S_un_b.s b4
#define s_|h S.un.S_un_b.s b3

November 15, 2021

<
S
Q
N

QQ

140 / 214

Ny 11
X 285 Bt 1 ——— 1 Pvi6 Y] 26 i

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

/* IPv6 address x/
struct in6_addr

{

union

uint8_t __u6_addr8[16];
#ifdef __USE_MISC

uintl6_t __u6_addrl6 [8];

uint32_t __u6_addr32[4];

#endif

} —-in6_u;
#define s6_addr __in6_u.__u6_addr8
#ifdef __USE_MISC
define s6_addrl6 __in6_u.__u6_addrl6
define s6_addr32 __in6_u.__u6_addr32
#endif

}i

November 15, 2021

141 / 214

Ny 11
X 28 3t ——— 1Py X 28 1t i ———

17 typedef struct in6_addr {

18 union {

19 u_char Byte[16];

20 u_short Word[8];

21 #ifdef __INSIDE-CYGWIN__

22 uint32.t _.s6.addr32[4];

23 #endif

2%} ou;

25 } IN6LADDR, +PIN6_ADDR, #LPIN6_ADDR;
2

27 #define in_addr6 in6_addr

28

29 #define _S6.un u

30 #define _S6.u8 Byte

31 #define s6.addr S6.un._S6-u8
32

33 #define s6_bytes u.Byte

34 #define s6.words u. Word

35

36 #ifdef __INSIDE-CYGWIN__

37 #define s6.addrl6 u. Word

38 #define s6.addr32 u._.s6_addr32
39 gendif

Mingw

November 15, 2021

142 / 214

W 48 3 Tk ——I Pv4) 28 b Ik — & TR

32

33
34

51

52

53

/+x Convert Internet host address from numbers—and—dots

notation in CP
into binary data in network byte order. x/

extern in_addr_t inet_addr (const char *__cp) _THROW;

/+ Convert Internet number in IN to ASCIl representation.

The return value

is a pointer to an internal array containing the string
*/
extern char xinet_ntoa (struct in_addr __in) _THROW;

. T T

WA 45 it ——IPvA R 25 i — % SR —FR

i

PR

src/inet_addr.c

#include

int main

{

20 | quit

Ttx.h"

(int arge, char rargy[])

char «ip = "127.0.0.1"; //255.255.255.2557

if (arge>1) {

ip = argv[1];

int r = tx_socklib.startup();
if(01=r) {

printf (" tx_socklib_startup_err:.%d, Ys\n"

. tx sock get errstr(r));

goto quit;

struct in addr addr;
addr.s_addr = inet_addr(ip);
tx mem dump(&addr , sizeof (addr));

tx socklib cleanup():

return r;

November 15, 2021

144 / 214

src/inet_addr.c

WA 45 it ——IPvA R 25 i — % SR —FR

i

HBUEFEFHF: src/inet_ntoa.c

1 ginclude

2
3
4

5
6
7

Y

int main

{

quit

“tx.h"

(int argc, char sargv[])

int r = tx socklib startup();
if(0l=r) {

printf("tx_socklib_startup_err:.%d, %s\n",

r, tx_sock_get_errstr(r));

goto quit;

struct in_addr addr;
addr.s_addr = ntohl (INADDRLOOPBACK) ;
tx mem dump(&addr , sizeof(addr));

char »p = inet_ntoa(addr);

printf("%s\n", p);

tx_socklib_cleanup();

return r;

November 15, 2021

145 / 214

src/inet_ntoa.c

PR 2% T —— e U

55

56

57
58

59

61

62

63
64

65

66

/x Convert from presentation format of an Internet number
in buffer
starting at CP to the binary network format and store
result for
interface type AF in buffer starting at BUF. x/
extern int inet_pton (int __af, const char x__restrict
--cp,
void x__restrict __buf) _THROW;

/x Convert a Internet address in binary network format for
interface
type AF in buffer starting at CP to presentation form
and place
result in buffer of length LEN astarting at BUF. x/
extern const char xinet_ntop (int __af, const void x*
__restrict __cp,
char % __restrict __buf,
socklen_t __len)

_THROW;

November 15, 2021

146 / 214

EJ
%
o
em

o MLAEE T

G ENS,

o FH
o L%
o EE%
o ThHiX

November 15, 2021 148 / 214

W25 B——E AR

o FREUENZFR: gethostname
o WHEHTENLI: sethostname

November 15, 2021 149 / 214

W25 B——E s

o FREUHZ ZFR: getdomainname
o WEIZAFR: setdomainname

November 15, 2021 150 / 214

99
100
101
102

103
104
105
106

107
108

109
110

/* Description of data base entry for a single host. x/

struct hostent

{
char xh_name; /*
*/
char xxh_aliases; /*
int h_addrtype; /*
int h_length; /*
char sxh_addr_list; /x
name server. x/
#ifdef __USE_MISC

define h_addr h_addr_list [0] /x Address, for
backward compatibility .x/
#endif

+

Official name of host.

Alias list. x/
Host address type. x/
Length of address. x/

List of addresses from

November 15, 2021

151 / 214

M 2815 B——IPva—ARIE & PRI BCENLE B

140
141
142

143
144

/+x Return entry from host data base for host with NAME.

This function is a possible cancellation point and
therefore not
marked with _THROW. x/

extern struct hostent xgethostbyname (const char %__name);

CS)& /
O
N
N

QQ

M 2815 B——IPva—ARIE & PRI BCENLE B

src/gethostbynane. ¢

struct hostent =phostent = gethostbyname(name);
if (NULL=phostent) {
err num = tx sock get herrnum();
printf (" gethostbyname.err: %d, %s\n" , err_num,
tx sock get herrstr(err num));
goto quit;
i
printf("phostent—>h_name: %s\n", phostent—>h_name);
for(int i=0; phostent—>h aliases[i]!=NULL; i++) {
printf(”phostent—>h_aliases(%d]: %s\n", i, phostent—>h_aliases[i
D
}
switch (phostent—>h addrtype) {
case AF_INET:
printf("phostent—>h addrtype:.%d(AF INET)\n", phostent—>
h_addrtype):
break;
default
printf("phostent—>h addrtype:.%d\n", phostent—
h_addrtype);
}

printf("phostent—>h_length: %d\n", phostent—>h_length);

for(int i=0; phostent—>h addr list [i]!=NULL; i++) {
printf("phostent—>h_addr(%d]: Ss\n", i, inet_ntoa(+((struct
in_addr+)phostent—>h_addr_list[i])));
i

November 15, 2021

153 / 214

src/gethostbyname.c

EEIEPE, [Pv4 RIEHHE IR ENLE B

132

133

134

135

136
137

138

/+* Return entry from host data base which address match
ADDR with
length LEN and type TYPE.

This function is a possible cancellation point and
therefore not
marked with _THROW. x/
extern struct hostent xgethostbyaddr (const void *__addr,
__socklen_t __len,

int __type);

S
S
5

QQ

I_JQ%{IZI ST IPv4

19 struct in_addr addr

2 addr_s addr = inet addr(ip):

2 struct hostent +phostent = gethostbyaddr ((const
char <)&addr, sizeof (addr), AFINET)

2 i (NULL—phostent) (

2 errnum = txsock_get-herraum ()

% printf (" gethostbyaddr.err: %id, Yis\n

err num . tx sock get herrstr(err num)):

2% goto quit;
% }

27 printf("phostent—>h.name: %s\n". phostent—>h_name)
8 For(int i=0; phostent—>h_aliases[i]I=NULL; i++) {
2 printf("phostent—>h_aliases[%d]: Jis\n" . i

phostent—>h aliases[i]):

0 }

a1 switch (phostent —>h_addrtype) {

2 case AF_INET

3 printf("phostent—>h addrtype :.%d(

AFINET)\n", phostent—>
h-addrtype)

Ed break

3 default

* printf("phostent—>h_addrtype : tid\n

", phostent—>h addrtype):

37 }

£ printf("phostent—>h_length: Jd\n", phostent—>

h-length)

3 For(int i=0; phostent—>h addr list[i]!=NULL; i+4)

{

0 printf("phostent—>h_addr[%d]: Shs\n" . i
inet ntoa («((struct in addre)phostent >
hoaddr_list[i])))

a }

EESEHY

RIEHHE IR ENLE B

November 15, 2021

155 / 214

src/gethostbyaddr.c

2415 B ——FE R Y

657

658
659
660

661
662
663
664

665

/% Translate name of a service location and/or a service
name to set of

socket addresses.

This function is a possible cancellation point and
therefore not
marked with _THROW. x/
extern int getaddrinfo (const char x__restrict __name,
const char x__restrict __service ,
const struct addrinfo *__restrict
__req,

struct addrinfo *x__restrict __pai

)

156 / 214

W& 15 B——RIEZ R ENLE R

657

658
659
660

661
662
663
664

665

666
667

668

669

670

671

/* Translate name of a service location and/or a service
name to set of

socket addresses

This function is a possible cancellation point and
therefore not
marked with THROW. x/
extern int getaddrinfo (const char %__restrict __name,
const char «__restrict __service,
const struct addrinfo *__restrict
_-req,
struct addrinfo *% __restrict __pai

)i

/+ Free 'addrinfo’ structure Al including associated
storage. x/

extern void freeaddrinfo (struct addrinfo x__ai) _THROW;

/+ Convert error return from getaddrinfo() to a string.
*/

extern const char xgai_strerror (int __ecode) _THROW;

November 15, 2021

157 / 214

W& 15 B——RIEZ R ENLE R

673

674
675

676
677

678

679

680

/x Translate a socket address to a location and service

name.

This function is a possible cancellation point and
therefore not
marked with _THROW. x/
extern int getnameinfo (const struct sockaddr x__restrict
__sa,
socklen_t __salen , char x

__restrict __host,

socklen_t __hostlen , char x*
__restrict __serv ,
socklen_t __servlen, int __flags);

<
S
Q
N

QQ

158 / 214

4. BURMEREF

o AR

&
y &
§§
K

QQ

. i 3, A

4. BIRREREF

o —MuiAE

&
&
O
\Q

QQ

. i 3, A

5 B AL

MRS5as: BET (HTOW) | GEEMHIN, ML, dmoiit)

ZPN: BET (ATER) | GEEHIN, M, dm o)

A
QQ

. i 3, A,

2 FEL
AL

PEVNEET . BETHHL]

AP ERT IR 0T IFERERT

| ITERT BERERT - BAERERT . BRTHILERITERET |

BT B

AFEBCE ST AL R

A B E T AL R

ME BT R

RHEEERT RUEREET

KT ERET

162 / 214

4. BIERREEF

o 4GP EHbAL

&
&
O
\Q

QQ

. (e

4 ik

o IZV;‘?&;EEU%

122

123

124

/+x Give the socket FD the local address

ADDR (which is LEN bytes long). x/

extern int bind (int __fd,
_CONST_SOCKADDR_ARG __addr ,

__len)

_THROW;

socklen_t

November 15, 2021 164 / 214

N
4. BHEREET

o (il

&
&
O
\Q

QQ

. i 5, A

N

T % 52

o HRHFE .

230 | /+ Prepare to accept connections on socket FD.

231 N connection requests will be queued before further
requests are refused.

232 Returns 0 on success, —1 for errors. %/

233 |extern int listen (int __fd, int __n) _THROW;

<
S
Q
N

QQ

. e T

4. BIRREREF

&
&
O
\Q

QQ

. (T

2 o
AR
o EEAH:
235 | /x Await a connection on socket FD.
236 When a connection arrives, open a new socket to
communicate with it,
237 set *ADDR (which is xADDR.LEN bytes long) to the
address of the connecting
238 peer and xADDR_LEN to the address’'s actual length,
and return the
239 new socket'’'s descriptor, or —1 for errors.
240
241 This function is a cancellation point and therefore
not marked with
242 _THROW. «/
243 |extern int accept (int __fd, _SOCKADDRARG __addr,
244 socklen_t x__restrict __addr_len);

168 / 214

N
4. BHEREET

&
&
O
\Q

QQ

. (T T

N
K AIERE

o @ﬁﬁgﬁﬂ

130

131

132

133

134

135

136
137

/x Open a connection on socket FD to peer at ADDR (

which LEN bytes long).

For connectionless socket types, just set
default address to send to

and the only address from which to accept
transmissions.

Return 0 on success, —1 for errors.

This function is a cancellation point and
not marked with

_THROW. +/

extern int connect (int __fd, __CONST_SOCKADDR_ARG

__addr, socklen_t __len);

the

therefore

November 15, 2021

&
S
Q\C
Q
N

QQ

170 / 214

4. BIRREREF

o WA HE

&
&
O
\Q

QQ

ELNEAE

o PREHE B

151 | /x Read N bytes into BUF from socket FD.

152 Returns the number read or —1 for errors.
153
154 This function is a cancellation point and therefore

not marked with
155 _THROW. x/
156 | extern ssize_t recv (int __fd, void x__buf, size_t __n,

int __flags);

RIEEAE

o PREHE B

145

146
147

148
149

/+ Send N bytes of BUF to socket FD. Returns the

number sent or —1.

This function is a cancellation point and therefore
not marked with
_THROW. x/
extern ssize_t send (int __fd, const void x__buf,

size_t _.n, int __flags);

. (T T

4. BIRREREF

&
&
O
\Q

QQ

BB

o PREEHA:

216

217

218

219

/% Put the current value for socket FD's
option OPTNAME at protocol level LEVEL
into OPTVAL (which is *OPTLEN bytes

long), and set *xOPTLEN to the value’

S
actual length . Returns 0 on success,
—1 for errors. x/
extern int getsockopt (int __fd, int

__level , int __optname,
November 15, 2021

%
s,

175 / 214

4. BIRREREF

o [EEHI

November 15, 2021

&
&
O
\Q

QQ

176 / 214

5. BUERERET

o EAM

G4

5 S
y &
S
K

OQ

. i 3, A

5. HIEREREF

o —MiAE

&
y &
§§
K

QQ

November 15, 2021 178 / 214

A

552

/

& 01

02

. (T

AR A
TIHEETA TTFERETX
HEEETA \lIPﬂ’Eth\ S [PEEETX Iéﬂﬂﬂt\ BEH L% H
M?Tﬁ?A?ﬁﬂ&é&?}%\ fEEMIE < --- - MERTX- Télﬁﬂﬁﬁtﬁiﬁ&%
FERETA - Tglﬁ%ﬂﬂﬁtﬁiﬁﬁﬁ ---- NEETX T‘élféi&it%qﬁfﬁ%
%Iﬂ—g?ﬁ%’:A ?%lﬂ%%?x

A
QQ

. i 5, A

5. HIEREREF

o WA KE

5 S
y &
S
K

OQ

. T T

ELNEAE

o PREHHA:
167 | /« Read N bytes into BUF through socket FD

168 I'f ADDR is not NULL, fill in *ADDR_LEN
bytes of it with tha address of

169 the sender, and store the actual size
of the address in xADDR_LEN.

170 Returns the number of bytes read or —1

%
s,

for errors. K

171
T T T

RIEE AR

o PREEHA:

158

159

160
161

162
163

/+x Send N bytes of BUF on socket FD to
peer at address ADDR (which is
ADDR LEN bytes long). Returns the

number sent, or —1 for errors.

This function is a cancellation point
and therefore not marked with
_THROW. x/

extern ssize_t sendto (int _-fd 7 const
November 15, 2021

%
s,

183 / 214

PRE S5 ——FE A UDPI R R 55 %

o K
5%/~ UDP R % F 9@ 5
o YRS
o JmiF
o 1T
f# Fnetstat -ano & &
18 i telnetill izt

. i 5, e

U P S ——FE A U DP AW B, 25 F Ui

o K
5 UD PRI R R 55 i B At U D PR R 2 7 e 5
o YRS
o JmiF
o 1T
ff Fnetstat -anofX &
18 i telnetill izt

AN
& &
S
S
5

OQ

. i 5, A

5. HIEREREF

o | HEHLH

&
y &
§§
K

QQ

November 15, 2021 186 / 214

8% FH B

ZPNR01 BPuE02 & uR03

November 15, 2021

187 / 214

AR
ITHERETA TP EHETX
HEEETA \lIPﬂ’EiJJ:\ it [iﬁESO_BROADCAéTiiIﬁEﬂ%ﬁ B
M@?%?A?ﬁqﬁéﬁ}%\ FREHIE < - - - - EETX - %E%i&iﬁﬁ%i&?&
[EHETFA Ta%m&%m; --o o NEETX T‘él%i&iﬁ%%@ﬁ}ﬁ
%I‘ﬂ%‘lﬁ%’m %lﬂgﬁ%ix

N
QQ

. i 5, A S

N (.
Gz S —— FEARSS%e |

o K

o YRS

o JiE

o iB1T
f# Finetstat -ano & &
1 i telnetill izt

&
O
S
&

November 15, 2021 189 / 214

N (.
Gt S ——T R g |

o K

o YRS

o JiE

o iB1T
f# Finetstat -ano & &
1 i telnetill izt

November 15, 2021 190 / 214

5. HIEREREF

o ZREHLHI

5 S
y &
S
K

OQ

. T T

EZoin]

2R

EZiHE ZH%4H2
\ & 04 (ZHE4H2)
03 (Z#E4HL)

P02 (341

P01 (ZHk4HL)

A
QQ

. i 3, A

AE
ITHEEFA
WEBEEFA \l IPHHE < ¥ FTHEREFX
e s
ME%?A%W%&?}% - FEREHAE < - - - - [MEEFX Tglﬁi@ﬁt?ﬁ%ﬁ?ﬁ
MEEFA T;%ﬂﬁiﬂ:ﬁiiiﬁﬁ ----0 NEEEFX Tglﬁi@ﬂt?ﬁqﬁiﬁﬁ
%%m %#@ ﬂ
%mgﬁiA %ﬁgﬁix e

. T

TtE Ll —Z RS54 |

o K

o YRS

o JiE

o iB1T
f# Finetstat -ano & &
1 i telnetill izt

November 15, 2021 194 / 214

N .
Yt S —— 22 R P g |

o K

o YRS

o JiE

o iB1T
f# Finetstat -ano & &
1 i telnetill izt

November 15, 2021 195 / 214

5. HIEREREF

o [EEHI

5 S
y &
S
K

OQ

November 15, 2021 196 / 214

6.

i N\ H AR Y

o [HEEMA

November 15, 2021

197 / 214

6. Fay N\ RS

o RIS

. i 3, A

fR&5 %

select W HIARTTEE
7

R0l R FNR02 & P03

. T

N, "
2 FEL
AL

THEEFA
HEA - IPHE - 3T
%%%bnAée:fd_set
A

HKEUE S 5 fd_set FIE & nselect
FATER setd, 2 HIRINERET B Z2fd_set FIEZAC
TEHIBTIRIGE B S EEFC

MG < LR
I, SR M fd_set FIEUHCHREER G
KA
] November 15, 2021

CS)Q /
O
N
N

QQ

200 / 214

6. Fay N\ RS

o FFAMRAY

§$
©

&

5 S

QQ

. i 0, o)

ARS5 %
A

HFEL FE2 BFE3

R0l R FNR02 & P03

November 15, 2021

NG

%)
4 Q'CQ
59
N

QQ

202 / 214

6.

i N\ H AR Y

November 15, 2021 203 / 214

November 15, 2021 204 / 214

7.

November 15, 2021 205 / 214

7. RIBEREF

o QI K]

§$
©

&

5 S

QQ

. i 3, A)

7. JRIaERF

o WA KR

§$
©

&

5 S

QQ

. i 3, e

7. RIBEREF

o EEHI

November 15, 2021 208 / 214

Ny /14
8. HEMERT

&
O

I \Q
&

. i 5, A)

Ny /1217
8. HEMERT

o QI K]

& S
5§
&

November 15, 2021 210 / 214

N 31
8. HEMERT

o WA HE

§$
©

&

5 S

QQ

8. HEMERT

o [EEHI

November 15, 2021 212 / 214

I, 1%
8. HRERT

o HAtf I

& S
5§
&

November 15, 2021 213 / 214

N .
Yt S —— 22 R P g |

o K

o YRS

o JiE

o iB1T
f# Finetstat -ano & &
1 i telnetill izt

November 15, 2021 214 / 214

	封面
	目录
	课程介绍
	目标要求
	学习方法
	参考资料
	考核标准

	网络编程基础
	计算机系统
	计算机网络
	基本概念
	历史发展
	分层模型
	OSI模型
	TCP/IP模型

	分布式系统
	基本概念
	总体特征
	应用实例
	发展趋势
	面临挑战

	系统模型
	物理模型
	结构模型

	应用接口
	应用层
	传输层
	网络层
	链路层

	开发环境
	基本概念
	硬件平台
	操作系统
	编译工具
	源码编辑
	测试程序

	语言速览

	套接字基础
	基本概念
	工作原理
	套接字库
	错误处理
	错误编号
	错误信息

	文件描述
	地址结构
	字节顺序
	网络地址
	网络信息

	数据流套接字
	基本概念
	一般流程
	绑定地址
	侦听连接
	接受连接
	发起连接
	收发数据
	接收数据
	发送数据

	设置选项
	基本介绍
	通用选项
	特定选项

	注意事项
	中断处理
	连接检测
	优雅关闭
	缓冲大小

	数据报套接字
	基本概念
	一般流程
	收发数据
	接收数据
	发送数据

	广播机制
	多播机制
	注意事项

	输入输出模型
	阻塞模型
	迭代模型
	并发模型
	多进程模型
	多线程模型

	异步模型

	原始套接字
	基本介绍
	创建关闭
	收发数据
	注意事项

	链路套接字
	基本介绍
	创建关闭
	收发数据
	注意事项
	其他接口

